skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christopoulou, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semiquantitative elemental results from X-ray fluorescence (XRF) scanning of sediment cores from International Ocean Discovery Program (IODP) Site U1574 in the Vøring Plateau, Norwegian Margin, are presented in this report. XRF elemental data were collected every 1 cm from a stratigraphically complete and continuous cored section with 102% recovery from the sea bottom to ~170 meters below seafloor in Hole U1574C. We report raw element intensities (counts) for Al, Si, K, Ca, Ti, Fe, Br, Sr, and Zr and identify covariation patterns consistent with lithofacies variations. Our high-resolution XRF scanning was conducted to better characterize the sediment depositional history at Site U1574 and to aid interpretation of past environmental and oceanographic conditions in the Norwegian Margin, targeting the earliest incursion of deep water into the young North Atlantic Ocean during the Early to Middle Eocene. The high-resolution XRF data also may help improve the age-depth model for the sediment succession at Site U1574. 
    more » « less
  2. Abstract While basaltic volcanism is dominant during rifting and continental breakup, felsic magmatism may be a significant component of some rift margins. During International Ocean Discovery Program (IODP) Expedition 396 on the continental margin of Norway, a graphite‐garnet‐cordierite bearing dacitic unit (the Mimir dacite) was recovered in two holes within early Eocene sediments on Mimir High (Site U1570), a marginal high on the Vøring Transform Margin. Here, we present a comprehensive textural, petrological, and geochemical study of the Mimir dacite in order to assess its origin and discuss the geodynamic implications. The major mineral phases (garnet, cordierite, quartz, plagioclase, alkali feldspar) are hosted in a fresh rhyolitic, vesicular, glassy matrix that is locally mingled with sediments. The major element chemistry of garnet and cordierite, the presence of zircon inclusions with inherited cores, and thermobarometric calculations all support an upper crustal metapelitic origin. While most magma‐rich margin models favor crustal anatexis in the lower crust, thermobarometric calculations performed here show that the Mimir dacite was produced at upper‐crustal depths (<5 kbar, 18 km depth) and high temperature (750–800°C) with up to 3 wt% water content. In situ U‐Pb analyses on zircon inclusions give a magmatic crystallization age of 54.6 ± 1.1 Ma, consistent with emplacement that post‐dates the Paleocene‐Eocene Thermal Maximum. Our results suggest that the opening of the Northeast Atlantic was associated with a phase of low‐pressure, high‐temperature crustal anatexis preceding the main phase of magmatism. 
    more » « less